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Abstract—We propose a novel approach to relational cluster-  similarity measure, for example tremsine similarity
ing: Given a matrix of pairwise similarity values between ob-

jects our algorithm computes a partition of the objects such that xta"jT
similar objects belong to the same cluster and dissimilar objects Sij = LV, )
belong to different clusters. The proposed approach is based on (ziz; )(ffjxj )

the assumption that the given similarities are products of cluster
membership variables. It is based on eigen vector decomposition and the dissimilarity can be computed with an appropriate
and minimizes the squared error between the similarities and  dissimilarity measure, for example tlficlidean norm

the products of membership vectors in an efficient, non-iterative
way with guaranteed global optimality. In experiments with d = \/(az — ) (w; — )T (4)
real world data we show superior performance to conventional Y ¢ JIA J

iterative clustering approaches.

Clustering based on feature vectors is calidgjlect feature

data clustering Notice that any relational clustering method

can be used for object feature data clustering if the given
Clustering is the process of partitioning a set.ofec feature vectors are first used to compute a similariy or

{1,2,...} (abstract) objectsD = {o1,...,0,} into ¢ € dissimilarity matrix.

{1,2,...} disjoint subsets (clusters},,...,C., C;NC; =0, In this paper we present a new approach to clustering

i#j,CiUCyU...UC, =0, in such a way that objects based on the idea that any pair of obje¢ts, 0;) should

in the same cluster are similar and/or objects in differerltelong to the same cluster in case of a high similasjfyand

I. INTRODUCTION

clusters are dissimilar. should belong to different clusters in case of a low similarity
Similarities or dissimilarities between objects may besi;. This leads us to define a new functional for so—called
specified by a matrix of pairwise similarities decomposite clusteringding and He [5] have pointed out
similarities between HCM angrincipal component analysis
11 Sin (PCA) [11]. Our approach is motivated byultidimensional
S = : : (1) scaling (MDS)[21], and yields a highly efficient one step
57'11 sm algorithm to perform clustering using eigen decomposition.
This paper is structured as follows: In section Il we
si5 >0, 855 = 554, 85 > 845 4,5 = 1,...,m, or a matrix of give a brief overview of state of the art iterative clustering
pairwise dissimilarities algorithms for relational and/or object feature data. In section
Il we define the objective function of decomposite clustering
dip e din and outline a gradient descent approach to optimize it. In
D= : : (2) section IV we quickly review multidimensional scaling and
dp1 - dun its one step solution using eigen decomposition. In section

V we show how eigen decomposition can be applied to de-
dij > 0, dijj = dj;, dis = 01,5 = 1,...,n. Such similarity composite clustering as well leading to a one step clustering
and dissimilarity matrices define relations 6hx O, hence algorithm. In section VI we present experiments with two
clustering based on such relation matrices is catdational real world data sets comparing decomposite clustering with a
clustering(3]. Similarities or dissimilarities may be explicitly popular iterative clustering algorithms (NERFCM). In section

given, e.g. from human ratings in phychological experiments/|| we finally summarize our conclusions.
or they may be derived from an object feature data set

X = {z1,...,z,} C RP where each feature vectar, II. CLUSTERING ALGORITHMS
k =1,...,n, refers to the features associated with object
oi. Consider for example a production of wood fiber board
that are specified by their geometry (length, width) and the
quality (strength, water absorption), leading to (normalize
four dimensional feature vectors [17]. The similarity of eac%
pair of fiber boards»; ando; can then be computed from .
the associated feature vectarsandz; using an appropriate

An example for relational clustering is tlsequential ag-
lomerative hierarchical nonoverlapping (SAHKIustering
Igorithm [19]. SAHN can be used for both similarity as
ell as dissimilarity matrices. The SAHN algorithm initially
ssigns each object to an individual clus@r = {o;},
=1,...,n, soinitially we havec = n clusters. In each step
SAHN decreases the number of clusters by one by merging

. . e Lhe two most similar (or least dissimilar) clusters to one
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similarity between any pair of objects frodi; x C;. Dis- which can be minimized by iteratively updating
similarity between clusters may be defined as the minimum,

n

n 9 n 9
. e . . utds ultulydse
the maximum, or the average dissimilarity between object P D DD Dl v
. . . . . noos=1 >, ul" s=1t=1 2( > u;’;g)
pairs. The corresponding algorithms are caltdgle link- wip = 1 Z =1 =1 (10)
age (maximum similarity, minimum dissimilarity);omplete ! = z": ufidsr z”: z": wuTdo
linkage (minimum similarity, maximum dissimilarity), and S e s | 2( ) u}”,,:)2
average linkage(average similarity, average dissimilarity). = =t

SAHN terminates when the desired number of clusters ishe reformulation from FCM to RFCM implicitly assumes
achieved or, latest, when all objects are merged to one singit@t the dissimilarity matrixD is computed from some
clusterC, = O. eature dataX using the Euclidean norm. If this is not the

An example for object feature data clustering is the C€ase. then RFCM might produce memberships < 0 or
meansfamily, containing in particulahard c-means (HCM) Uik > 1. This problem can be avoided by transforming the
[1], fuzzy c—means (FCM[2], and possibilistic c-means dissimilarity matrix D into a Euclidean dissimilarity matrix
(PCM) [10]. This family of clustering models uses a set ofs PY applying a so—called—spread transform [7]
prototypesV = {vy,...,v.} C R? to represent the clusters, Ds=D+3-B (11)
wherev; is the centerof cluster C;. Clustering is done by

minimizing the dissimilarities between the cluster prototypeith @ sitable € R, where B € [0,1]"*" is the off-

(centers) and the feature vectors of the objects belongiffgonal matrix withb,; =1 for alli,j = 1,....n, i # j,
to the respective clusters, so the c-means clustering mod@ld bii = 0 for all i = 1,...,n. The parameter; is
are all based on dissimilarities not similarities. For exampl&UCessively increased, i.e. higher valuesjoare added to
FCM minimizes _the of_f—dlagqnal elements ok, u_ntll _the Euclldean_ case
is achieved, i.e. alki;; € [0, 1]. This yieldsnon—Euclidean
c n relational fuzzy c—-mean@NERFCM) [7]. In a similar way
T =Y > ujrd(vi,zx) (5)  HCM can be advanced to RHCM and NERHCM, and PCM
i=1 k=1 to RPCM and NERPCM [14].
for the matrixU of memberships.;, € [0, 1] of objectoy, in [1l. DECOMPOSITECLUSTERING
clusterC;, with the normalization conditions In this paper we propose a new approach to relational clus-
tering. The basic idea of this approach is that similar objects
- ‘ should have similar membership vectprs= (u1;,. .., uc;)
Z“ik:l’ i=1...,c ©) andpg = (uig, - .-, Uek), 4,k = 1,...,n. u; anduy, specify
k=1 fuzzy setsA; and A, whose similarity is defined as
d(v;, z1) denotes the dissimilarity between and xy, for i T(uij, use)
example the Euclidean norm, amd > 1 is a suitable algo- IA;NA &
rithmic parameter calletlzzinessThe necessary conditions Wik = A, UAL] ~ & (12)
for extrema ofJ,, can be used for iterative minimization. Z; C(uij, uik)

If d(-,-) is an inner product norm, the® and V are

alternatingly updated by with a suitable t—norm¥" and t—conornC. In this paper we

choose the product t—norm and assume disjoint clusters of

. 2 equal sizes, so we can set the denominators constant, which
wip = 1 d(vi, zy) (7) leads to the approximate (scaled) similarity
j=1 d(vj7 Ik) c
Wik = Zuijuik (13)
i=1
> ultwy So, the similarity of a pair of objects can be approximated
v; = ’6271’7 (8) by the scalar product of their membership vectors. Notice
Z uln that scalar products of membership vectors (to the power
k=1 of m) also occur in (9) and ifuzzy nonlinear projection

_ ) ) _ ~ (FNP) [13]. The scalar product of two membership vectors
A relational extension of FCM can be obtained by inserting high if the both objects have high memberships in the
(8) into (5) [8]. This yields therelational fuzzy c-means game cluster, and it is low if they have high memberships in
(RFCM) objective function [3] different clusters, i.e. a pair of objects is considered similar
if both objects belong to the same cluster, and dissimilar if

. Xn: f: utuipds, they belqng to differer_n cIusters_, vyhi(_:h matches the intuitive
g, = Z j=1 k:711 9) expectation. The matrix of the similarities;;, can be written
= Yy o .
=1 wW=U"U (14)



In relational clustering based on similarities, we have a givetlecomposition with the matriQ) = (vq,...,v,) of eigen-
similarity matrix S and produce a partition matri. We vectors of Y and the diagonal matriA whose diagonal
want the matrixi¥’ to represent the similaritie§) = S, so elements are the corresponding eigenvalue¥ of\;; = \;,
for a given.S we want to find al/ that solves i=1,...,n, SO

S=W=UTU (15) Y =QAQT = (QVA')- (VAQT) = XXT  (19)

S is ann x n matrix. If we allowU to be anmn x n matrix as  and X can be finally extracted as
well, and require that is symmetric and positive definite, - T
then we can find a lower triangular mattix satisfying (15) X =QVA (20)

by Cholesky dec?mpogition which can be solved by Gaussigthjs approach produces dimensional feature vector§ c
elimination in O(zn?) time [6]. In clustering, however, we g~ For lower dimensional projection§ ¢ R?, ¢ < n, only
are looking for ac x n notn x n partition matrix U, SO  the firstq dimensions are used and then scaled so that their

Cholesky decomposition is not suitable here. Moreover, singg,ared norms are equal to the corresponding eigenvalues.
U hasc-n and S hasn? free variables, we are in gereral

not even able to satisfy but only approximate (15). Using a V- CLUSTERING BY EIGEN DECOMPOSITION
squared error criterion we therefore define thecomposite ~ To solve the decomposite clustering functional (16) for
clusteringfunctional U we adopt the eigen decomposition approach in MDS and
<9 T2 write (15) using the eigen decomposition$fvith the matrix
J=S-WI"=|Ss-U"U]| (16) Q = (v1,...,v,) of eigenvectors ofS and the diagonal
A simple and straightforward approach to minimize thenatrix A whose diagonal elements are the corresponding
decomposite clustering functional (16) is gradient descergigenvalues of5, A;; = \;, i =1,...,n.

U is randomly initialized and then iteratively updated by S = QAQT = (Q\/KT) (VAQT) = UTU 21)

T
U=U=-a-US-U0) A7) \Wwhich yields the membership values

with a suitable step sizee > 0. The authors have im- _ T

plemented and tested this approach but experienced that it U=vAQ (22)
required many iterations and very often got stuck in localhis approach produces squatex n matricesU. In clus-
extrema so that it had to be repeated many times witiering, we are looking forc x n matricesU, i.e. using
new initializations. Therefore, we pursue a different anthe eigen decomposition from above we can only consider
much more efficient approach here that is motivated by eigenvectors and eigenvalues. In order to minimize the
multidimensional scaling (MDSpR1]. guadratic approximation error of the eigen decomposition we
consider only the largest eigenvalues and the corresponding

eigenvectors. Thus, we still use (22) to compUtebut now
Multidimensional scaling (MDS) is a method to computeayith the ¢ x » matrix

IV. MULTIDIMENSIONAL SCALING

feature dataX that best approximate a given dissimilarity P 0 0 0
matrix R. Consider for example a sél of text documents 0 A\ 0 0 0
with a given dissimilarity matrixR computed from word A= _2 (23)
counts, i.e. the dissimilarity of a document pair is low when : : S e
both documents share many common words with similar 0O 0 0 X O ... O

counts [9], [16]. A two dimensional feature data Sétwith it eigenvalues sorted in descending order. The decompos-
R~ R then represents the locations of each text documegL ¢ stering functional (16) is not only minimized Hy
in O on a two—dimensional map so that similar document@zz) but also any rotation o’

are close and dissimilar documents are distant. Another

application of MDS is nonlinear dimension reduction, i.e. U=RU RR'=1I (24)

(nonlinear) mapping of high—dimensional feature dafa

to low—dimensional feature data so that the associated

dissimilarity matrices® and R are as similar as possible.  (RU)"(RU) =U"R"RU = UT(R"R)U =U"U (25)
For the case of Euclidean norms Young and Householdey,o 5oy tiont7 and its rotations are matrices Re*™ but

[21] present an approach to represent MDS as an eigen vector

" X 19 clustering we require partition matrices jfA, 1]°*™. In
problem and solve it in a single step procedure. To do so, th%\érticular, we want to avoid negative memberships RU
show that the matrix™ = X X7 can be written in double j

specifiesn points in ac dimensional space. In the following
centered form as we restrict toc = 2, so we haven points in the two—
y — —EHDH, H =1y, — lJan (18) dimension_al plgne. Having non_—negat!ve memberships means
2 that all points inRU should be in the first quadrant, so their
where I,,«,, is then x n identity matrix, andJ, «,, is the angle
n x n matrix of ones. ThenY is diagonalized by eigen pr = atanZugk, u1y) (26)

because



« input similarity matrix.s

« compute eigenvectorQ and eigenvalued of S
« truncate eigenvalue matrix by (23)

« computeU = vVAQT

« compute rotation matribx by (27), (28), (26)
e Output RU

Fig. 1. The decomposite clustering algorithens= 2.

should be in[0,7/2], kK = 1,...,n. From the infinite set of
solutions RU we select the solution that maps the average
of the minimum and maximum angles,, kK =1,...,n, to

the diagonal in the first quadrant at the anglét, so

cosa —sina
R= . 27 i
sin o COS O ( ) Fig. 2. The melanoma data set.

with the angle

1 . . . ... . 4
a=r_=Z ( max o5+ k—min o) (28) termination threshold for successive partitiong is- 10~°.

4 2 k=l..n =1,...,n Because of its iterative nature, NERFCM always requires
The overall decomposite clustering algorithm is summarizegignificantly more time than decomposite clustering. We do
in Fig. 1. In contrast to the gradient descent approadht use SAHN for comparison here because it produces hard
mentioned before this eigen decomposition approach is vefjjon—fuzzy) clusters.

fast andalwaysfinds the global optimum. Fig. 3 shows the results of the experiments with the
melonoma data set. The three graphs (a), (b), and (d) show
VI. EXPERIMENTS the membership functions of the two clusters (black and

In the first set of experiments we consider a real worlgrey) for the19 + 12 = 31 objects on the horizontal axis.
gene expression data set for cutaneous malignant melanor@aaph (c) shows the scatter plots of the memberships in the
the most common type of human cancers [4]. The authofisst cluster on the horizontal and the second cluster on the
provide gene expression profiles for 31 melanoma and vértical axis. Fig. 3a shows the memberships obtained by
control samples from a microarray containing probes foNERFCM. All memberships are very close tgc = 0.5,
8067 cDNAs. We ignore the control samples and onlgo the two membership functions can not be distinguished
consider the3l x 8067 data setX;. The objects in the but appear as two overlapping horizontal linesuat 0.5.
melanoma are sorted by class. The first 19 objects refer Tis is a well known phenomenon that occurs with NERFCM
one type of melanoma that we will for simplicity call classwhen applied to very high—dimensional data- n [15]. Fig.
one, and the the other 12 objects refer to another type thzlh shows a zoom of these memberships revealing that one
we will call class two. As suggested in the original papecluster (black) mainly captures class one (first 19 objects),
we compute thg19 + 12) x (19 + 12) matrix of Pearson and the other cluster (grey) class two (last 12 objects). If
correlation coefficients and use it as the dissimilarity matrixised as a classifier, this would imply two misclassifications
R;. We then normalize the dissimilarities to the unit intervaln class one (objects 10 and 13), and one misclassification
[0,1] and finally convert the dissimilarities to similaritiesin class two (object 27). The left view of Fig. 3c shows
by s;; = 1 — d;;. Fig. 2 shows a grey value visualizationthe original matrixU obtained by decomposite clustering

of the resulting data sef;. Light boxes (as on the main in a scatter plot, i.e. the point&uy, uar), & = 1,...,n.
diagonal) represent high similarities (close ity and dark As mentioned in the previous sectiol is an optimal
boxes represent low similarities (close@p solution of (16) but so is any rotatio®U. In order to

The melanoma data set has more features than objeatbtain a partition matrix, we require positive memberships,
p > n, which is often the case in bioinformatics dataso we rotateU (left) so that all the pointsRU move
especially in microarray data [12]. Fer > n it is usually to the first quadrant (right). The corresponing membership
quite easy to build a classifier with a very good classificatiofunction is shown in Fig. 3d. Apparently, the memberships
rate on the training data set. However, because of overfitti@j each object do not sum up to one, so the normalization
the generalization ability of such a classifier is usuallyondition of the FCM family (6) does not hold. The black
quite bad, so building good classifiers is very difficult forcluster represents class one with only one misclassification
p > n. Also clustering is often difficult forp > n. We (object 13), and the grey cluster class two with the same
used the melanoma data s&t as described above andmisclassification as NERFCM (object 27). So, besides being
applied NERFCM and the decomposite clustering algorithrfaster and always finding the global optimum, decomposite
proposed in this paper, both fer= 2. For NERFCM, the clustering outperforms NERFCM on the melanoma data set.
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Fig. 4. The house votes data set.

we compute g168 + 267) x (168 + 267) dissimilarity data
set R, using the Euclidean norm. As with the melanoma data
set, we normalize the dissimilarities f@ 1] and compute the
similarities ass;; = 1 — d;;. Fig. 4 shows a visualization of
the resulting data sef,.

Fig. 5 shows the results of the experiments with the house
votes data set. Fig. 5a shows the memberships obtained by
NERFCM. Again, the memberships are closelie = 0.5
but this time both membership functions can be visually
distinguished. The grey cluster represents the democrats
class (first 168 objects) with 5 misclassifications (objects
29, 70, 102, 138, 154), and the black cluster represents the
republicans class (last 267 objects) with 42 misclassifications
(objects 1, 2, 3, 4, 5, 46, 47, 48, 49, 52, 53, 60, 61, 63,
66, 91, 96, 97, 98, 99, 101, 105, 136, 172, 179, 193, 199,
200, 201, 223, 229, 230, 231, 235, 237, 238, 241, 243, 245,
248, 250, 251). The left view of Fig. 5b shows the scatter
plots of the original and rotated matricEsand RU obtained
by decomposite clustering. Agair is chosen so that all
points are in the first quadrant. The corresponing membership
function is shown in Fig. 5c. The grey cluster represents the
democrats class also with 5 misclassifications (for the same
objects as NERFCM), and the black cluster represents the
republicans class with only 40 misclassifications (the same
objects as NERFCM except 53 and 193). Again, decomposite
clustering produces better clustering results than NERFCM,
with lower computational effort and the guarantee to always

In the second set of experiments we consider the congregg the global optimum.

sional voting records data skbuse-votes-84
from the UCI machine learning repository, originally from

available

VIlI. CONCLUSIONS

the Congressional Quarterly Almanac, 98th Congress, 2ndWe have introduced a new approach to clustering based on
session 1984, Volume XL: Congressional Quarterly Inche idea that similar objects should belong to the same clus-
Washington, D.C., 1985, provided by J. C. Schlimmer [18}ter, and dissimilar objects should belong to different clusters.
This data set includes votes (yea or nay) for each of the U.B/e have shown that the similarity of the memberships of
House of Representatives Congressmen, 168 democrats angair of points can be (at least approximately) computed
267 republicans, on the 16 key votes (handicapped infantssing scalar products. We have developed the decompos-
water project cost sharing, etc.), summarized in a binaije clustering functional by requiring that the similarities
(168 + 267) x 16 feature data sef,. From this data set computed from memberships should be approximately equal
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to the given similarity matrix. Besides a simple gradienti2]
descent approach we have shown how the decomposite
clustering functional can be optimized using eigen vectql_;L3
decomposition. This approach is computationally efficient
and is guaranteed to find the global optimum, in contrat4l
to conventional iterative clustering algorithms. For= 2
we have shown how the resulting partition can be rotated $gp)
that all the memberships are positive. In experiments with
two real world data sets (melanoma data set and house vo
data set) we compared decomposite clustering with non—
Euclidean relational fuzzy c—means (NERFCM) and found
that decomposite clustering is not only faster and alwa
finds the global optimum, but even finds clusters that better
match the given class distributions.

Although decomposite clustering yields highly impressive; g
results, we have to leave some aspects open that still require
further studies:

[19]

« Is it possible that the matrik does not fit into a single [20]
quadrant? How should such a matrix be treated?

« How can the rotation of/ be performed for > 2? [21]

« How can the positive membership constraint be inte-

grated into the clustering functional? This would avoid

the post—rotation of the result. How can the resulting
functional be solved by eigen decomposition?

How can decomposite clustering be explicitly extended
to dissimilarity matrices?

How can prototypes be included in decomposite clus-
tering?

How does this novel approach relate to spectral cluster-
ing [20]?
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