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Abstract— We propose a novel approach to relational cluster-
ing: Given a matrix of pairwise similarity values between ob-
jects our algorithm computes a partition of the objects such that
similar objects belong to the same cluster and dissimilar objects
belong to different clusters. The proposed approach is based on
the assumption that the given similarities are products of cluster
membership variables. It is based on eigen vector decomposition
and minimizes the squared error between the similarities and
the products of membership vectors in an efficient, non–iterative
way with guaranteed global optimality. In experiments with
real world data we show superior performance to conventional
iterative clustering approaches.

I. I NTRODUCTION

Clustering is the process of partitioning a set ofn ∈
{1, 2, . . .} (abstract) objectsO = {o1, . . . , on} into c ∈
{1, 2, . . .} disjoint subsets (clusters)C1, . . . , Cc, Ci∩Cj = ∅,
i 6= j, C1 ∪ C2 ∪ . . . ∪ Cc = O, in such a way that objects
in the same cluster are similar and/or objects in different
clusters are dissimilar.

Similarities or dissimilarities between objects may be
specified by a matrix of pairwise similarities

S =

 s11 · · · s1n

...
...

...
sn1 · · · snn

 (1)

sij ≥ 0, sij = sji, sii > sij i, j = 1, . . . , n, or a matrix of
pairwise dissimilarities

D =

 d11 · · · d1n

...
...

...
dn1 · · · dnn

 (2)

dij ≥ 0, dij = dji, dii = 0 i, j = 1, . . . , n. Such similarity
and dissimilarity matrices define relations onO ×O, hence
clustering based on such relation matrices is calledrelational
clustering[3]. Similarities or dissimilarities may be explicitly
given, e.g. from human ratings in phychological experiments,
or they may be derived from an object feature data set
X = {x1, . . . , xn} ⊂ Rp where each feature vectorxk,
k = 1, . . . , n, refers to the features associated with object
ok. Consider for example a production of wood fiber boards
that are specified by their geometry (length, width) and their
quality (strength, water absorption), leading to (normalized)
four dimensional feature vectors [17]. The similarity of each
pair of fiber boardsoi and oj can then be computed from
the associated feature vectorsxi andxj using an appropriate

Thomas A. Runkler and Florian Steinke are with Siemens Corporate Tech-
nology, 81730 Munich, Germany (email: thomas.runkler@siemens.com,
phone: +49 89 636 40010).

similarity measure, for example thecosine similarity

sij =
xix

T
j√

(xixT
i )(xjxT

j )
(3)

and the dissimilarity can be computed with an appropriate
dissimilarity measure, for example theEuclidean norm

dij =
√

(xi − xj)(xi − xj)T (4)

Clustering based on feature vectors is calledobject feature
data clustering. Notice that any relational clustering method
can be used for object feature data clustering if the given
feature vectors are first used to compute a similariy or
dissimilarity matrix.

In this paper we present a new approach to clustering
based on the idea that any pair of objects(oi, oj) should
belong to the same cluster in case of a high similaritysij and
should belong to different clusters in case of a low similarity
sij . This leads us to define a new functional for so–called
decomposite clustering. Ding and He [5] have pointed out
similarities between HCM andprincipal component analysis
(PCA) [11]. Our approach is motivated bymultidimensional
scaling (MDS)[21], and yields a highly efficient one step
algorithm to perform clustering using eigen decomposition.

This paper is structured as follows: In section II we
give a brief overview of state of the art iterative clustering
algorithms for relational and/or object feature data. In section
III we define the objective function of decomposite clustering
and outline a gradient descent approach to optimize it. In
section IV we quickly review multidimensional scaling and
its one step solution using eigen decomposition. In section
V we show how eigen decomposition can be applied to de-
composite clustering as well leading to a one step clustering
algorithm. In section VI we present experiments with two
real world data sets comparing decomposite clustering with a
popular iterative clustering algorithms (NERFCM). In section
VII we finally summarize our conclusions.

II. CLUSTERING ALGORITHMS

An example for relational clustering is thesequential ag-
glomerative hierarchical nonoverlapping (SAHN)clustering
algorithm [19]. SAHN can be used for both similarity as
well as dissimilarity matrices. The SAHN algorithm initially
assigns each object to an individual clusterCi = {oi},
i = 1, . . . , n, so initially we havec = n clusters. In each step
SAHN decreases the number of clusters by one by merging
the two most similar (or least dissimilar) clusters to one
new cluster. Similarity between two clustersCi andCj may
be defined as the minimum, the maximum, or the average



similarity between any pair of objects fromCi × Cj . Dis-
similarity between clusters may be defined as the minimum,
the maximum, or the average dissimilarity between object
pairs. The corresponding algorithms are calledsingle link-
age (maximum similarity, minimum dissimilarity),complete
linkage (minimum similarity, maximum dissimilarity), and
average linkage(average similarity, average dissimilarity).
SAHN terminates when the desired number of clusters is
achieved or, latest, when all objects are merged to one single
clusterC1 = O.

An example for object feature data clustering is thec–
meansfamily, containing in particularhard c–means (HCM)
[1], fuzzy c–means (FCM)[2], and possibilistic c–means
(PCM) [10]. This family of clustering models uses a set of
prototypesV = {v1, . . . , vc} ⊂ Rp to represent the clusters,
wherevi is the centerof clusterCi. Clustering is done by
minimizing the dissimilarities between the cluster prototypes
(centers) and the feature vectors of the objects belonging
to the respective clusters, so the c–means clustering models
are all based on dissimilarities not similarities. For example,
FCM minimizes

Jm =
c∑

i=1

n∑
k=1

um
ikd(vi, xk)2 (5)

for the matrixU of membershipsuik ∈ [0, 1] of objectok in
clusterCi, with the normalization conditions

n∑
k=1

uik = 1, i = 1, . . . , c (6)

d(vi, xk) denotes the dissimilarity betweenvi and xk, for
example the Euclidean norm, andm > 1 is a suitable algo-
rithmic parameter calledfuzziness. The necessary conditions
for extrema ofJm can be used for iterative minimization.
If d(·, ·) is an inner product norm, thenU and V are
alternatingly updated by

uik = 1

/
c∑

j=1

(
d(vi, xk)
d(vj , xk)

) 2
m−1

(7)

vi =

n∑
k=1

um
ikxk

n∑
k=1

um
ik

(8)

A relational extension of FCM can be obtained by inserting
(8) into (5) [8]. This yields therelational fuzzy c–means
(RFCM) objective function [3]

Jm =
c∑

i=1

n∑
j=1

n∑
k=1

um
ij um

ikd2
jk

n∑
j=1

um
ij

(9)

which can be minimized by iteratively updating

uik = 1

/
n∑

j=1

n∑
s=1

um
isdsk

nP
r=1

um
ir

−
n∑

s=1

n∑
t=1

um
isum

it dst

2
( nP

r=1
um

ir

)2

n∑
s=1

um
jsdsk

nP
r=1

um
jr

−
n∑

s=1

n∑
t=1

um
jsum

jtdst

2
( nP

r=1
um

jr

)2

(10)

The reformulation from FCM to RFCM implicitly assumes
that the dissimilarity matrixD is computed from some
feature dataX using the Euclidean norm. If this is not the
case, then RFCM might produce membershipsuik < 0 or
uik > 1. This problem can be avoided by transforming the
dissimilarity matrixD into a Euclidean dissimilarity matrix
Dβ by applying a so–calledβ–spread transform [7]

Dβ = D + β ·B (11)

with a suitableβ ∈ R+, whereB ∈ [0, 1]n×n is the off–
diagonal matrix withbij = 1 for all i, j = 1, . . . , n, i 6= j,
and bii = 0 for all i = 1, . . . , n. The parameterβ is
sucessively increased, i.e. higher values ofβ are added to
the off–diagonal elements ofR, until the Euclidean case
is achieved, i.e. alluik ∈ [0, 1]. This yieldsnon–Euclidean
relational fuzzy c–means(NERFCM) [7]. In a similar way
HCM can be advanced to RHCM and NERHCM, and PCM
to RPCM and NERPCM [14].

III. D ECOMPOSITECLUSTERING

In this paper we propose a new approach to relational clus-
tering. The basic idea of this approach is that similar objects
should have similar membership vectorsµj = (u1j , . . . , ucj)
andµk = (u1k, . . . , uck), j, k = 1, . . . , n. µj andµk specify
fuzzy setsAj andAk whose similarity is defined as

wjk =
‖Aj ∩Ak‖
‖Aj ∪Ak‖

=

c∑
i=1

T (uij , uik)

c∑
i=1

C(uij , uik)
(12)

with a suitable t–normT and t–conormC. In this paper we
choose the product t–norm and assume disjoint clusters of
equal sizes, so we can set the denominators constant, which
leads to the approximate (scaled) similarity

w̃jk =
c∑

i=1

uijuik (13)

So, the similarity of a pair of objects can be approximated
by the scalar product of their membership vectors. Notice
that scalar products of membership vectors (to the power
of m) also occur in (9) and infuzzy nonlinear projection
(FNP) [13]. The scalar product of two membership vectors
is high if the both objects have high memberships in the
same cluster, and it is low if they have high memberships in
different clusters, i.e. a pair of objects is considered similar
if both objects belong to the same cluster, and dissimilar if
they belong to different clusters, which matches the intuitive
expectation. The matrix of the similarities̃wjk can be written
as

W̃ = UT U (14)



In relational clustering based on similarities, we have a given
similarity matrix S and produce a partition matrixU . We
want the matrixW̃ to represent the similarities,̃W = S, so
for a givenS we want to find aU that solves

S = W̃ = UT U (15)

S is ann×n matrix. If we allowU to be ann×n matrix as
well, and require thatS is symmetric and positive definite,
then we can find a lower triangular matrixU satisfying (15)
by Cholesky decomposition which can be solved by Gaussian
elimination in O( 1

6n3) time [6]. In clustering, however, we
are looking for ac × n not n × n partition matrix U , so
Cholesky decomposition is not suitable here. Moreover, since
U hasc · n and S hasn2 free variables, we are in gereral
not even able to satisfy but only approximate (15). Using a
squared error criterion we therefore define thedecomposite
clusteringfunctional

J = ‖S − W̃‖2 = ‖S − UT U‖2 (16)

A simple and straightforward approach to minimize the
decomposite clustering functional (16) is gradient descent:
U is randomly initialized and then iteratively updated by

U := U − α · U(S − UT U) (17)

with a suitable step sizeα > 0. The authors have im-
plemented and tested this approach but experienced that it
required many iterations and very often got stuck in local
extrema so that it had to be repeated many times with
new initializations. Therefore, we pursue a different and
much more efficient approach here that is motivated by
multidimensional scaling (MDS)[21].

IV. M ULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS) is a method to compute
feature dataX̃ that best approximate a given dissimilarity
matrix R. Consider for example a setO of text documents
with a given dissimilarity matrixR computed from word
counts, i.e. the dissimilarity of a document pair is low when
both documents share many common words with similar
counts [9], [16]. A two dimensional feature data setX̃ with
R̃ ≈ R then represents the locations of each text document
in O on a two–dimensional map so that similar documents
are close and dissimilar documents are distant. Another
application of MDS is nonlinear dimension reduction, i.e.
(nonlinear) mapping of high–dimensional feature dataX
to low–dimensional feature datãX so that the associated
dissimilarity matricesR and R̃ are as similar as possible.

For the case of Euclidean norms Young and Householder
[21] present an approach to represent MDS as an eigen vector
problem and solve it in a single step procedure. To do so, they
show that the matrixY = XXT can be written in double
centered form as

Y = −1
2
HDH, H = In×n −

1
n

Jn×n (18)

where In×n is the n× n identity matrix, andJn×n is the
n× n matrix of ones. Then,Y is diagonalized by eigen

decomposition with the matrixQ = (v1, . . . , vn) of eigen-
vectors of Y and the diagonal matrixΛ whose diagonal
elements are the corresponding eigenvalues ofY , Λii = λi,
i = 1, . . . , n, so

Y = QΛQT = (Q
√

Λ
T
) · (

√
ΛQT ) = XXT (19)

and X̃ can be finally extracted as

X̃ = Q
√

Λ
T

(20)

This approach producesn dimensional feature vectors̃X ⊂
Rn. For lower dimensional projections̃X ⊂ Rq, q < n, only
the firstq dimensions are used and then scaled so that their
squared norms are equal to the corresponding eigenvalues.

V. CLUSTERING BY EIGEN DECOMPOSITION

To solve the decomposite clustering functional (16) for
U we adopt the eigen decomposition approach in MDS and
write (15) using the eigen decomposition ofS with the matrix
Q = (v1, . . . , vn) of eigenvectors ofS and the diagonal
matrix Λ whose diagonal elements are the corresponding
eigenvalues ofS, Λii = λi, i = 1, . . . , n.

S = QΛQT = (Q
√

Λ
T
) · (

√
ΛQT ) = UT U (21)

which yields the membership values

U =
√

ΛQT (22)

This approach produces squaren × n matricesU . In clus-
tering, we are looking forc × n matrices U , i.e. using
the eigen decomposition from above we can only consider
c eigenvectors and eigenvalues. In order to minimize the
quadratic approximation error of the eigen decomposition we
consider only thec largest eigenvalues and the corresponding
eigenvectors. Thus, we still use (22) to computeU , but now
with the c× n matrix

Λ =


λ1 0 . . . 0 0 . . . 0
0 λ2 . . . 0 0 . . . 0
...

...
...

...
... · · ·

...
0 0 0 λc 0 . . . 0

 (23)

with eigenvalues sorted in descending order. The decompos-
ite clustering functional (16) is not only minimized byU
(22) but also any rotation ofU

U = RU, RRT = I (24)

because

(RU)T (RU) = UT RT RU = UT (RT R)U = UT U (25)

The solutionU and its rotations are matrices inRc×n but
in clustering we require partition matrices in[0, 1]c×n. In
particular, we want to avoid negative membershipsuik. RU
specifiesn points in ac dimensional space. In the following
we restrict to c = 2, so we haven points in the two–
dimensional plane. Having non–negative memberships means
that all points inRU should be in the first quadrant, so their
angle

ϕk = atan2(u2k, u1k) (26)



• input similarity matrixS
• compute eigenvectorsQ and eigenvaluesΛ of S
• truncate eigenvalue matrixΛ by (23)
• computeU =

√
ΛQT

• compute rotation matrixR by (27), (28), (26)
• outputRU

Fig. 1. The decomposite clustering algorithm,c = 2.

should be in[0, π/2], k = 1, . . . , n. From the infinite set of
solutionsRU we select the solution that maps the average
of the minimum and maximum anglesϕk, k = 1, . . . , n, to
the diagonal in the first quadrant at the angleπ/4, so

R =
(

cos α − sinα
sinα cos α

)
(27)

with the angle

α =
π

4
− 1

2
(

max
k=1,...,n

ϕk + min
k=1,...,n

ϕk

)
(28)

The overall decomposite clustering algorithm is summarized
in Fig. 1. In contrast to the gradient descent approach
mentioned before this eigen decomposition approach is very
fast andalwaysfinds the global optimum.

VI. EXPERIMENTS

In the first set of experiments we consider a real world
gene expression data set for cutaneous malignant melanoma,
the most common type of human cancers [4]. The authors
provide gene expression profiles for 31 melanoma and 7
control samples from a microarray containing probes for
8067 cDNAs. We ignore the control samples and only
consider the31 × 8067 data setX1. The objects in the
melanoma are sorted by class. The first 19 objects refer to
one type of melanoma that we will for simplicity call class
one, and the the other 12 objects refer to another type that
we will call class two. As suggested in the original paper
we compute the(19 + 12) × (19 + 12) matrix of Pearson
correlation coefficients and use it as the dissimilarity matrix
R1. We then normalize the dissimilarities to the unit interval
[0, 1] and finally convert the dissimilarities to similarities
by sij = 1 − dij . Fig. 2 shows a grey value visualization
of the resulting data setS1. Light boxes (as on the main
diagonal) represent high similarities (close to1), and dark
boxes represent low similarities (close to0).

The melanoma data set has more features than objects,
p > n, which is often the case in bioinformatics data,
especially in microarray data [12]. Forp > n it is usually
quite easy to build a classifier with a very good classification
rate on the training data set. However, because of overfitting
the generalization ability of such a classifier is usually
quite bad, so building good classifiers is very difficult for
p > n. Also clustering is often difficult forp > n. We
used the melanoma data setS1 as described above and
applied NERFCM and the decomposite clustering algorithm
proposed in this paper, both forc = 2. For NERFCM, the

Fig. 2. The melanoma data set.

termination threshold for successive partitions isε = 10−4.
Because of its iterative nature, NERFCM always requires
significantly more time than decomposite clustering. We do
not use SAHN for comparison here because it produces hard
(non–fuzzy) clusters.

Fig. 3 shows the results of the experiments with the
melonoma data set. The three graphs (a), (b), and (d) show
the membership functions of the two clusters (black and
grey) for the19 + 12 = 31 objects on the horizontal axis.
Graph (c) shows the scatter plots of the memberships in the
first cluster on the horizontal and the second cluster on the
vertical axis. Fig. 3a shows the memberships obtained by
NERFCM. All memberships are very close to1/c = 0.5,
so the two membership functions can not be distinguished
but appear as two overlapping horizontal lines atu = 0.5.
This is a well known phenomenon that occurs with NERFCM
when applied to very high–dimensional datap > n [15]. Fig.
3b shows a zoom of these memberships revealing that one
cluster (black) mainly captures class one (first 19 objects),
and the other cluster (grey) class two (last 12 objects). If
used as a classifier, this would imply two misclassifications
in class one (objects 10 and 13), and one misclassification
in class two (object 27). The left view of Fig. 3c shows
the original matrixU obtained by decomposite clustering
in a scatter plot, i.e. the points(u1k, u2k), k = 1, . . . , n.
As mentioned in the previous section,U is an optimal
solution of (16) but so is any rotationRU . In order to
obtain a partition matrix, we require positive memberships,
so we rotateU (left) so that all the pointsRU move
to the first quadrant (right). The corresponing membership
function is shown in Fig. 3d. Apparently, the memberships
of each object do not sum up to one, so the normalization
condition of the FCM family (6) does not hold. The black
cluster represents class one with only one misclassification
(object 13), and the grey cluster class two with the same
misclassification as NERFCM (object 27). So, besides being
faster and always finding the global optimum, decomposite
clustering outperforms NERFCM on the melanoma data set.
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Fig. 3. Memberships for the lung cancer data set.

In the second set of experiments we consider the congres-
sional voting records data sethouse-votes-84 available
from the UCI machine learning repository, originally from
the Congressional Quarterly Almanac, 98th Congress, 2nd
session 1984, Volume XL: Congressional Quarterly Inc.
Washington, D.C., 1985, provided by J. C. Schlimmer [18].
This data set includes votes (yea or nay) for each of the U.S.
House of Representatives Congressmen, 168 democrats and
267 republicans, on the 16 key votes (handicapped infants,
water project cost sharing, etc.), summarized in a binary
(168 + 267) × 16 feature data setX2. From this data set

Fig. 4. The house votes data set.

we compute a(168 + 267)× (168 + 267) dissimilarity data
setR2 using the Euclidean norm. As with the melanoma data
set, we normalize the dissimilarities to[0, 1] and compute the
similarities assij = 1− dij . Fig. 4 shows a visualization of
the resulting data setS2.

Fig. 5 shows the results of the experiments with the house
votes data set. Fig. 5a shows the memberships obtained by
NERFCM. Again, the memberships are close to1/c = 0.5
but this time both membership functions can be visually
distinguished. The grey cluster represents the democrats
class (first 168 objects) with 5 misclassifications (objects
29, 70, 102, 138, 154), and the black cluster represents the
republicans class (last 267 objects) with 42 misclassifications
(objects 1, 2, 3, 4, 5, 46, 47, 48, 49, 52, 53, 60, 61, 63,
66, 91, 96, 97, 98, 99, 101, 105, 136, 172, 179, 193, 199,
200, 201, 223, 229, 230, 231, 235, 237, 238, 241, 243, 245,
248, 250, 251). The left view of Fig. 5b shows the scatter
plots of the original and rotated matricesU andRU obtained
by decomposite clustering. Again,R is chosen so that all
points are in the first quadrant. The corresponing membership
function is shown in Fig. 5c. The grey cluster represents the
democrats class also with 5 misclassifications (for the same
objects as NERFCM), and the black cluster represents the
republicans class with only 40 misclassifications (the same
objects as NERFCM except 53 and 193). Again, decomposite
clustering produces better clustering results than NERFCM,
with lower computational effort and the guarantee to always
find the global optimum.

VII. C ONCLUSIONS

We have introduced a new approach to clustering based on
the idea that similar objects should belong to the same clus-
ter, and dissimilar objects should belong to different clusters.
We have shown that the similarity of the memberships of
a pair of points can be (at least approximately) computed
using scalar products. We have developed the decompos-
ite clustering functional by requiring that the similarities
computed from memberships should be approximately equal
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Fig. 5. Memberships for the house votes data set.

to the given similarity matrix. Besides a simple gradient
descent approach we have shown how the decomposite
clustering functional can be optimized using eigen vector
decomposition. This approach is computationally efficient
and is guaranteed to find the global optimum, in contrast
to conventional iterative clustering algorithms. Forc = 2
we have shown how the resulting partition can be rotated so
that all the memberships are positive. In experiments with
two real world data sets (melanoma data set and house votes
data set) we compared decomposite clustering with non–
Euclidean relational fuzzy c–means (NERFCM) and found
that decomposite clustering is not only faster and always
finds the global optimum, but even finds clusters that better
match the given class distributions.

Although decomposite clustering yields highly impressive
results, we have to leave some aspects open that still require
further studies:

• Is it possible that the matrixU does not fit into a single
quadrant? How should such a matrix be treated?

• How can the rotation ofU be performed forc > 2?
• How can the positive membership constraint be inte-

grated into the clustering functional? This would avoid
the post–rotation of the result. How can the resulting
functional be solved by eigen decomposition?

• How can decomposite clustering be explicitly extended
to dissimilarity matrices?

• How can prototypes be included in decomposite clus-
tering?

• How does this novel approach relate to spectral cluster-
ing [20]?
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